Showing posts with label special angles. Show all posts
Showing posts with label special angles. Show all posts

Wednesday, October 20, 2021

Lesson 9 - Reference Angles: Introduction to Trigonometry in Taglish - ALS Module Trigonometric Functions 2

 LESSON 9 – REFERENCE ANGLES

Sa Lesson 9, matutunan natin ang tungkol sa reference angles o mga sangguniang anggulo. Ipapakita sa iyo ng araling ito kung paano hanapin ang mga values ng anim na trigonometric functions (sine, cosine, tangent, cosecant, secant, at cotangent) ng iba pang mga anggulo na may mga sukat na multiples ng 30o, 45o, at 60o. Malalaman mo na ang kanilang mga values ay katulad din ng natutunan natin sa nakaraang aralin.



PAG-ARALAN AT SURIIN NATIN

Pagmasdan ang Figure 1 sa ibaba:


Look at the terminal side of A (Angle A). What is the acute angle formed by this terminal side with the horizontal axis?

If your answer is B, you are right. B is the acute angle formed by the terminal side of ∠A and the horizontal axis. B is called the reference angle of ∠A. 

Pagmasdan ang Figure 2 sa ibaba:

Figure 2
(Image from analyzemath.com)

        Ang mga given angles A sa itaas ay may kulay itim, samantalang kulay pula naman ang mga reference angles.

Mapupuna natin ang mga reference angles ay mga acute angles (anggulo na may sukat na mataas sa zero degrees pero mas mababa sa 90 degrees.) Ang reference angle ay nabuo ng terminal side (pinakadulong gilid) ng given angle at ng horizontal axis ( or x-axis).

TANDAAN ANG MGA SUMUSUNOD

1. Lahat ng reference angle r ay acute angles na may sukat na mas mataas sa zero degree pero mas mababa sa 90 degrees.

2. Sa  First Quadrant (0o < θ < 90o), ang reference angle r ng given angle θ ay ang mismong given angle θ.

Halimbawa, kung ang given angle θ = 30o, ang reference angle r nito ay ∠30o din.

3. Sa Second Quadrant (90o < θ < 180o), mahahanap ang reference angle r ng given angle θ sa pamamagitan ng pagkuha ng supplementary angle nito o paggamit ng formula nito: r = 180o - θ
Halimbawa, kung θ = 130o , its reference angle r is:
r =  180o - θ ==> r = 180o – 130o ==> r =50o.

3. Sa Third Quadrant (180o < θ < 270o), mahahanap ang reference angle r ng given angle θ sa pamamagitan ng formulang ito:  r = θ - 180o

Halimbawa, kung θ = 250o , its reference angle r is:
r =  θ - 180==>   r = 250o – 180o ==> r =70o.

4. Sa Fourth Quadrant ( 270o < θ < 360o), mahahanap ang reference angle r ng given angle θ sa pamamagitan ng formulang ito:  r = 360o - θ

Halimbawa, kung θ = 305o , its reference angle r is:
r =  360o - θ==> r = 360o – 305o ==> r =55o.

SUBUKIN NATIN ITO

Upang matasa ang ating natutunan, subukin nating sumagot ng ilang problema hinggil sa paghanap ng reference angle r.

1. What is the reference angle of 120o?

STEP 1: Determine in which interval the given angle belongs.

120o is between 90o and 180o. Kung gayon, ang 120o ay matatagpuan sa Second Quadrant o Quadrant II.

STEP 2: Determine which formula for r will be used.

Dahil ang 120o ay nasa Second Quadrant, ang formula nating gagamitin ay 
r = 180o - θ

STEP 3: Substitute the value of the given angle.

ɵ = 120o
r = 180o - θ
r = 180o – 120o
r = 60o

Samakatuwid, ang reference angle r ng 120o ay ang special angle na 60o.


2. What is the reference angle of 330o?

STEP 1: Determine in which interval the given angle belongs.

300o is between 270o and 360o. Kung gayon ang 300o ay matatagpuan sa Fourth Quadrant o Quadrant IV.

STEP 2: Determine which formula for r will be used.

Dahil ang 330o ay nasa Fourth Quadrant, ang formula nating gagamitin ay 
r = 360o - θ

STEP 3: Substitute the value of the given angle.

ɵ = 330o
r = 360o - θ
r = 360o – 330o
r = 30o

Samakatuwid, ang reference angle r ng 330o ay ang special angle na 30o.

3. What is the reference angle of 240o?

STEP 1: Determine in which interval the given angle belongs.

240o is between 180o and 270o. Kung gayon ang 240o ay matatagpuan sa Third Quadrant o Quadrant III.

STEP 2: Determine which formula for r will be used.

Dahil ang 240o ay nasa Third Quadrant, ang formula nating gagamitin ay 
r = θ - 180o

STEP 3: Substitute the value of the given angle.

θ = 240o
        r = θ - 180o
r = 240o – 180o
r = 60o

Samakatuwid, ang reference angle r ng 240o ay ang special angle na 60o.

MATUTO TAYO

A. The numeric value of the trigonometric function of a given angle is equal to the numeric value of the trigonometric function of its reference angle.

Ibig sabihin, kung ang reference angle r ng Ao  ay Bo at  ang sin Ao = x, ang sin Bo ay x din.

When we say numeric value, it means that we also consider the sign (positive or negative) of the trigonometric function.

B. We note that a trigonometric function is positive or negative depending on the measure of the angle. In determining the sign of a numeric value, we observe the following rules:

    1. If the measure of θ is greater than 0° but less than 90°, all the six trigonometric functions (sin θ, cos θ, tan θ,  csc θ, sec θ , and cot θ)  are positive

Kung ang given angle θ ay nasa First Quadrant, lahat ng anim na trigonometric functions - sin θ, cos θ , tanθ,  csc θ, sec θ , at cot θ  - ay pawang  POSITIVE. 

    2. If the measure of θ is greater than 90° but less than 180°, sin θ and csc θ are positive. The other four functions are negative.

Kung ang given angle θ ay nasa Second Quadrant, ang sin θ  at ang kanyang reciprocal/inverse na csc θ ay POSITIVE; ang iba pang function ay NEGATIVE na.

    3. If the measure of θ is greater than 180° but less than 270°, tan θ and cot θ are positive. The other four functions are negative.

Kung ang given angle θ ay nasa Third Quadrant, ang tan θ at ang kanyang reciprocal / inverse na cot θ ay POSITIVE; ang iba pang function ay NEGATIVE na.

    4. If the measure of θ is greater than 270° but less than 360°, cos θ and sec θ are positive. The other four functions are negative.

Kung ang given angle θ ay nasa Fourth Quadrant, ang cos θ at ang kanyang reciprocal / inverse  na sec θ ay POSITIVE; ang iba pang function ay NEGATIVE na.

SUBUKIN NATIN ITO

Now let’s try to solve for the numeric values of the trigonometric functions of a given angle.

Problem 1: Find the values of the six trigonometric functions of the angle 120°. 

We have previously learned that the reference angle of 120° is 60°.
Therefore, we will use the trigonometric function values of the special angle 60° that you learned in Lesson 8. Since 120° is in the Second Quadrant, only sine and its reciprocal/inverse cosecant are positive.

Thus, we have:

sin 120° = sin 60° = √3/2 
csc 120° = csc 60° = 2/√3  𝑜𝑟 2√3/3
cos 120° = –cos 60° = - 1/2
sec 120° = –sec 60° = - 2/1  or -2
tan 120° = –tan 60° = - √3/1  𝑜𝑟 −√3
cot 120° = –cot 60°- 1/√3 𝑜𝑟 −√3/3

Problem 2: Find the values of the six trigonometric functions of the angle 225°

STEP 1: Determine the reference angle of the given angle.

225° is between 180° and 270° and in the Third Quadrant,  so we use the formula:
r = θ - 180° 
r = 225° - 180° 
r = 45°

Samakatuwid, ang reference angle ng 225o ay ang special angle na 45o.

STEP 2: Determine the values of the trigonometric functions of the reference angle. 

Gagamitin natin ang anim na trigonometric functions ng 45° na nakuha natin sa Lesson 8.  

STEP 3: Determine the signs of the values.

The given angle is 225° and in the Third Quadrant. Therefore, tangent and cotangent are the only positive functions. We thus have:

sin 225° = -sin 45° = - 1/√2 or - √2/2    
csc 225° = -csc 45° = - √2/1  𝑜𝑟 −√2
cos 225° = –cos 45° = - 1/√2  𝑜𝑟 −√2/2
sec 225°–sec 45°– √2/1  𝑜𝑟 −√2  
tan 225° = tan 45° = 1/1 or 1       
cot 225° = cot 45° = 1/1 or 1

Problem 3: Find the values of the six trigonometric functions of the angle 330°

STEP 1: Determine the reference angle of the given angle.

330° is between 270° and 360° and in the Fourth Quadrant,  so we use the formula:
r = 360o - θ 
r = 360° - 330° 
r = 30°

Samakatuwid, ang reference angle ng 330o ay ang special angle na 30o.

STEP 2: Determine the values of the trigonometric functions of the reference angle. 

Gagamitin natin ang anim na trigonometric functions ng 30° na nakuha natin sa Lesson 8.  

STEP 3: Determine the signs of the values.

The given angle is 330° and in the Fourth Quadrant. Therefore, cosine and secant are the only positive functions. We thus have:

sin 330° = -sin 30° = - 1/2
csc 330° = -csc 30° = - 2/1  𝑜𝑟 −2
cos 330° = cos 30° = √3/2
sec 330°sec 30°2/√3  𝑜𝑟  (2√3)/3
tan 330° = -tan 30° = - 1/√3 or - √3/3    
cot 330° = -cot 30° = - √3/1 or - √3

SUMMARY

Muling unawain at tandaan ang ating mga natutunan:

A. We use the following steps in computing for the reference angle r of a given angle θ:

STEP 1 Determine in which interval the given angle θ belongs or what quadrant                 it is located.

STEP 2 Determine which formula for r will be used.

STEP 3 Substitute the value of the given angle.

B. We use the corresponding formulas in computing for the reference angle according to the following rules.

    1. If the given angle θ is greater than 90° but less than 180° (90° < θ < 180°), the formula to be used is: 
r = 180°– θ .

    2. If the angle θ is greater than 180° but less than 270° (180° < θ < 270°), the formula to be used is: 
r = θ – 180°.

    3. If the given angle θ is greater than 270° but less than 360° (270° < θ < 360°), the formula to be used is: 
r = 360° – θ .

C. The numeric values of the trigonometric functions of a given angle is equal to the numeric values of the trigonometric functions of its reference angle.

In determining the signs of the numeric values of the trigonometric functions of a certain angle θ, we follow these rules:

    1. If the measure of θ is greater than 90° but less than 180°, sin θ and csc θ are positive. The other four functions are negative. The given angle θ is in the Second Quadrant.

    2. If the measure of θ is greater than 180° but less than 270°, tan θ and cot θ are positive. The other four functions are negative. The given angle θ is in the Third  Quadrant.

3. If the measure of θ is greater than 270° but less than 360°, cos θ and sec θ are positive. The other four functions are negative. The given angle θ is in the Fourth Quadrant.

4. Upang madaling matandaan kung ano - ano lamang ang POSITIVE SIGNS ng numeric values ng mga Trigonometric Functions, tandaan lamang ang phrase na ito: “All Stations To Central” at ang drawing sa ibaba




PAGSASANAY

A. Find the reference angle of each of the following angles. 

1. 135°
2. 150°
3. 210°
4. 300°
5. 315°

B.    Determine the values of the following functions. 

1. sin 135°
2. cos 210°
3. tan 240°
4. sec 315°
5. csc 330°

MGA SAGOT SA PAGSASANAY

Monday, October 18, 2021

Lesson 8 - Special Angles: Introduction to Trigonometry in Taglish - ALS Module Trigonometric Functions 2

 Note: Upang maunawaan ang araling ito, dapat ay napag-aralan muna ang Lesson 1 to 7.

LESSON 8 – SPECIAL ANGLES

Sa Lesson 1- 7, nakilala mo ang mundo ng Trigonometry. Nalaman mo ang tungkol sa mga linya at anggulo at kanilang mga sukat gayundin ang tungkol sa mga complementary at supplementary angles. Nalaman mo rin ang mga uri ng anggulo ayon sa sukat ng kanyang mga gilid at sukat ng angle na nabuo ng mga gilid, at kung ano ang anim na trigonometric functions.




Sa modyul na ito, malalaman mo ang tungkol sa mga values ng mga trigonometric functions ng mga espesyal na anggulo (special angles). Mapapahalagahan mo rin ang kahalagahan ng mga espesyal na anggulong ito habang inilalapat sa mga pang-araw-araw na sitwasyon sa buhay.

Naglalaman ang modyul na ito ng apat na aralin:

Lesson 8Special Angles/ Mga Espesyal na Anggulo

Lesson 9Reference Angles/ Mga Sangguniang Anggulo

Lesson 10Using a Scientific Calculator: Sin, Cos and Tan Keys/ Paggamit ng isang Scientific Calculator: Sin, Cos at Tan Keys

Lesson 11Trigonometric Functions in Everyday Life/ Mga Trigonometric Function sa Pang-araw-araw na Buhay

PAG-ARALAN AT SURIIN NATIN

Ang Figure 1 sa ibaba ay nagpapakita ng isang equilateral triangle. Ang isang equilateral triangle ay isang tatsulok na may pantay o pare-parehong sukat  ng mga gilid (sides). Ang bawat anggulo sa isang equilateral triangle ay may sukat na 60o  ( 60 degrees). Matatandaan na ang kabuuang sukat ng mga angles sa isang triangle ay 180 degrees (180o).


Kapag hinati natin ang tatsulok sa Figure 1 sa dalawa sa pamamagitan ng pag-bisect ng isa sa mga anggulo, makakakuha tayo ng dalawang right triangles tulad ng ipinakita sa Figure 2.


Kung susuriin ang Fig. 2, dalawang triangles ang nabuo — triangles A at B. Pareho silang 30o – 60o right triangles. Sa isang tatsulok ng ganitong uri, ang hypotenuse ang pinakamahaba at  palaging dalawang beses ang haba sa pinakamaikling gilid/side;  ang mas mahaba namang gilid ay √3 times ang haba sa pinakamaikling gilid.

Ang pinakamaikling bahagi ay nasa tapat ng 30o angle, habang ang mas mahabang bahagi o gilid ay nasa tapat ng 60o angle. Ang hypotenuse ay laging katapat ng 90o angle o ng right angle.

Ipagpalagay na ang haba ng hypotenuse ng mga triangles A at B ay 2 units, samakatuwid, batay sa mga katangian ng isang 30o – 60o  right triangle, ang mga triangles A at B ay may mga sumusunod na sukat:


Dahil parehong right triangles ang dalawang tatsulok,gagamitin natin ang Pythagorean Theorem upang suriin kung tama ang mga sukat sa itaas.

Matapos lapatan ng Theorem ng Pythagorean, mayroon tayong:

c2 = a2 + b2
22 = 12 + (√3)2
4 = 1 + 3
4 = 4

Samakatuwid, ang mga sukat ay tama.

DAPAT UNAWAIN AT TANDAAN

Sa pagsagot ng mga problema na kinasasangkutan ng 30o-60o special triangle, dapat alalahanin ang mga sumusunod na katangian nito:

1. Ang hypotenuse ang siyang pinakamahaba ang sukat sa tatlong mga gilid o sides. Ito ay dalawang beses ang haba sa pinakamaliit na gilid.  Ito ay katapat ng 90o angle.

2. Ang gilid na mas maliit  sa hypotenuse  o mas mahaba sa pinakamaikling gilid  ay may sukat na √3 (square root of three) times ng sukat ng pinakamaikling gilid o side. Ito ay katapat ng 60o angle.

3. Ang pinakamaikling  gilid ay katapat ng 30o angle.

Upang lubos pang maunawaan ang konsepto sa itaas, sagutin natin ang problemang ito:

The hypotenuse of a 30° – 60° right triangle has a length of 9 units. What is the length of the other two sides?

Steps in Solving this problem

Step 1: Determine the given facts. 

length of hypotenuse = 9 units
Let’s call the hypotenuse as c; 
        c = 9 units

Step 2: Determine what is asked for in the problem.

The lengths of the other two sides

Step 3: Find the length of the shortest side.

We use the property of the 30°– 60° right triangle which states that the hypotenuse is always twice as long as the shortest side.

Let a = the shortest side
2a = c = the length of the hypotenuse 
Substituting the given length of the hypotenuse,
2a = 9
a = 9/2

Step 4: Find the length of the longer side.

We know that for a 30°– 60° right triangle that the longer side is √3 times as long as the shortest side. Designating b as the longer side, we have:

b  =  a (√3)   
      
Since a  =  9/2 (From Step 3),

b = 9/2 (√3) or 9/2 √3

Step 5. Use the Pythagorean theorem to check the values obtained.

a = 9/2     b = 9/2 √3 c = 9

Pythagorean Theorem:

        c2 = a2 + b2

92 = (9/2)2 + [9/2 √3]2
81 = 81/4 + 81/4 (3)
81 = 81/4 + 243/4
81 = 324/4
81 = 81

Our answer is correct.

MATUTO TAYO

Alalahanin natin ang 30o-60o right triangle sa Figure 2.


Makikita sa larawan na ang hypotenuse ay may habang 2 units. The side opposite the 30o angle has a length of 1 unit while the side adjacent to the 30oangle has a length of √3 (square root of 3).

Ang ating nakuhang mga sukat ay:

hypotenuse                          c = 2
side opposite 30° angle           a = 1 
side adjacent to 30° angle      b = √3

Using the definitions of the trigonometric functions, we have the following values for ∠30o based on c = 2; a = 1; and b = √3:

sin 30o   = opposite side/ hypotenuse =  a/c = 1/2
cos 30o   = adjacent side/ hypotenuse = b/c = √3/2
tan 30o  = opposite side/ adjacent side = a/b = 1/√3 or √3/3

Note:   The denominator √3 is a radical and the fraction was simplified by multiplying both the numerator and the denominator by the radical (1/√3  x  √3/√3 = √3/√9 = √3/3)

csc 30o  = hypotenuse/ opposite side = c/a = 2/1 = 2
sec 30o = hypotenuse/ adjacent side = c/b = 2/√3 or 2√3/3
cot 30o = adjacent side / opposite side = b/a = √3/1 = √3

Gamit ang  30o-60o  right triangle sa Figure 2, kunin natin ang mga values ng six trigonometric functions para sa ∠60o.



Batay sa larawan, ang mga sukat para sa ∠60o ay:

hypotenuse                 c = 2
side opposite 60o          a = √3
side adjacent to 60o b = 1

Using the definitions of the trigonometric functions, we have the following values for ∠60o  based on  
hypotenuse c = 2 opposite side a = √3   adjacent side b = 1:

sin 60o = opposite side/ hypotenuse =  a/c = √3/2
cos 60o  = adjacent side/ hypotenuse = b/c = 1/2
tan 60o= opposite side/ adjacent side = a/b =  √3/1 or √3

csc 60o= hypotenuse/ opposite side = c/a = 2/√3 or 2√3/3

Note:   The denominator √3 is a radical and the fraction was simplified by multiplying both the numerator and the denominator by the radical ( 2/√3  x  √3/√3 = 2√3/√9 = 2√3/3

sec 60o= hypotenuse/ adjacent side = c/b = 2/1 or  2
cot 60o= adjacent side / opposite side = b/a = 1/√3 or √3/3

PAG-ARALAN AT SURIIN NATIN

Ang isa pang uri ng tatsulok na espesyal  o special triangle ay ang 45o – 45o right triangle. Ang tatsulok na ito ay isang isosceles triangle  at sa gayon ay may dalawang gilid/side na may parehong haba. Kung hahayaan natin na ang mga gilid na magkapareho ay may sukat na 1 at kung ang c ay kumakatawan sa hypotenuse, ang tatsulok ay kinakatawan ng Figure 3 sa ibaba.

                                                            Figure 3

Gamit ang  Pythagorean theorem, makakalkula natin ang value ng  hypotenuse  c:

        c= ?    a = 1        b = 1

        c2 = a2 + b2

Let's substitute the values:
        c2 = 12 + 12
c2 = 2
c = √2  (square root of 2)

Narito ang sukat ng mga gilid ng 45o-45o right triangle:

hypotenuse  c = √2 opposite side a = 1    adjacent side b = 1

 Kung gayon, ang  45°– 45° right triangle ay mayroong mga values para sa six trigonometric functions:

sin 45o  = opposite/hypotenuse = a/c = 1/√2 or  √2/2

cos 45o = adjacent/hypotenuse = b/c = 1/√2 or √2/2

tan 45o = opposite/adjacent = a/b = 1/1 or 1

csc 45o = hypotenuse /opposite = c/a = √2/1 or √2

sec 45o = hypotenuse/adjacent = c/b = √2/1 or √2

cot 45o = adjacent/opposite = b/a = 1/1 or 1

SUMMARY

1. Ang unang special angle na ating napag-aralan ay ang 30o-60o right angle kung saan nakabuo tayo ng 30o-60o right angle . Ito ay nakuha natin nang i-bisect natin ang isang angle ng isang equilateral triangle (triangle na may pare-parehong haba o sukat ang mga gilid o sides). 

2. Isa pang special triangle ay ang  45o-45o right triangle. Ang tatsulok na ito ay isang isosceles triangle (triangle na may 2 gilid na magkapareho ang haba o sukat) 

3. Base sa mga triangles na ito, napag-alaman natin ang values ng 6 na trigonometric functions para sa∠30o, ∠45o, at ∠60o. Tunghayan  ang mga values ng mga ito sa isang table sa susunod na pahina.


PAGSASANAY

1. The length of the hypotenuse of a 30o-60o right triangle is 7 units. Find the length of the other two sides. 

2. The length of the shortest side of a 30o-60o right triangle is 5 units. What is the length of the other two sides?

MGA SAGOT SA PAGSASANAY

The length of the hypotenuse of a 30o-60o right triangle is 7 units. Find the length of the other two sides. 

Step 1: Determine the given facts.

length of hypotenuse   c = 7 units

Step 2: Determine what is asked for in the problem.

length of the other two sides 

Step 3: Find the length of the shortest side.

In a 30o-45o60o right triangle, the shortest side is one-half the length of the hypotenuse or the hypotenuse is twice the length of the shortest side.

Let a = shortest side
a = 1/2c
a = ½ (7) = 7/2    or 3.5 units

Step 4: Find the length of the longer side.

In a 30o-60o right triangle, the longer side is √3   times
as long as the shortest side. 

Let b = shorter side
b = a (√3)
b = 7/2 (√3)  or     7/2 √3  units

Step 5: Use the Pythagorean theorem to check the values obtained.

        c2 = a2 + b2
          
72 =  (7/2)2 + (7/2 √3)2
49 = 49/4    +  [49/4  (3)]
        49 = 49/4   +  147/4
49 = 196/4
49 = 49

2. The length of the shortest side of a 30o-60o right triangle is 5 units. What is the length of the other two sides?

Step 1: Determine the given facts.

length of shortest side   a = 5 units

Step 2: Determine what is asked for in the problem.

length of the other two sides 

Step 3: Find the length of the longest side.

In a 30o-60o right triangle, the shortest side is one-half the length of the hypotenuse or the hypotenuse is twice the length of the shortest side.

Let c = longest side
c = 2a
c = 2 (5) = 10 units

Step 4: Find the length of the longer side.

In a 30o-60o right triangle, the longer side is √3   times
as long as the shortest side. 

Let b = shorter side
b = a (√3)
b = 5(√3)  or     5√3 units

Step 5: Use the Pythagorean theorem to check the values obtained.

c2 = a2 + b2

102 =  52 + (5√3)2
        100 = 25  +  [25(3)]
        100 = 25  +  75
        100 = 100

NOTE: If you want to view the lesson on YouTube, please click the link below and subscribe:


















 






Wednesday, October 13, 2021

Lesson 7 - Six Trigonometric Functions: Introduction to Trigonometry in Taglish

 LESSON 7 – The Six Trigonometric Functions

Pagtutuunan natin sa araling ito ang tungkol sa anim (6) na Trigonometric Functions. Bago natin tukuyin ang mga katangian ng mga ito, balik-aralan muna natin ang mga bahagi ng right triangle kung saan nakabase ang anim na functions ng Trigonometry.




Sinasabing right triangle ang isang trianggulo o tatsulok kung ito ay may isang right angle. Ang right angle ay may sukat na 90 degrees (90o) o π/2 radian o 1.5708 radians ( 90 x π/180; where π≈ 3.1416).



Pagmasdan ang right triangle sa itaas:

Mayroong  espesyal na pangalan para sa bawat gilid o side ng isang right triangle. Ang dalawang gilid ng ΔXYZ (triangle XYZ)  na bumubuo ng right angle, XZ at YZ, ay tinatawag na mga binti  o legs ng tatsulok. Ang pangatlong gilid, XY, ay tinawag na hypotenuse. Ang hypotenuse ay ang gilid sa tapat ng right angle. Ito ang pinakamahabang gilid/side ng right triangle.

Sukatin natin ang haba ng mga gilid ng right triangle:

XY = 25 units YZ = 7 units XZ = 24 units

Ang tatsulok sa itaas ay may 2 acute angles. Alalahanin na acute angle ang tawag sa anggulo o salikop na may sukat na mas malaki sa zero degree ngunit mas mababa sa 90 degrees.

Ang mga acute angles na ito ay ang∠X (angle X) at ∠Y (angle Y).  Ang bawat isa sa mga ito ay naporma sa pamamagitan ng hypotenuse at isang leg o gilid. Ang ∠X ay produkto ng side XY at side XZ, samantalang ang ∠Y ay gawa ng side XY at side YZ.

Ang leg na kasama ng hypotenuse upang makagawa ng acute angle ay tinatawag na adjacent side/leg.

Sa ating halimbawang drawing sa itaas,  ang  leg/side adjacent sa ∠X ay side XZ (o XZ lamang). Ang leg naman adjacent sa ∠Y ay YZ. Dalawa ang side adjacent sa ∠Z; ito ay XZ at YZ.

Opposite side naman ang tawag sa gilid/side/leg na katapat ng angle na pinagbabatayan. Narito ang opposite side ng ating tatlong angle:
∠X ==> YZ ∠Y ==> XZ ∠Z ==>XY

Dapat tandaan na ang opposite side ng right angle (90 degrees) o ∠Z ay ang hypotenuse. Depende sa anggulo o salikop na pinagbabatayan, ang opposite side ng isang acute angle ay maaaring adjacent side naman ng isa pang acute angle at kabaliktaran o vice versa.

Halimbawa, ang opposite side ng ∠X ay YZ, samantalang ang YZ ay siyang adjacent side ng ∠Y; ang XZ ay ang opposite side ng ∠Y, samantalang  ang XZ ay siyang adjacent side ng ∠X .

PAGSASANAY A

Batay sa drawing sa ibaba, sagutin ang mga tanong:



hypotenuse =
side adjacent to ∠A =
side opposite ∠A =
side adjacent to ∠B =
side opposite ∠B =
side opposite ∠C =
side/s adjacent to ∠C =

2. Batay sa drawing sa ibaba, sagutin ang haba ng mga gilid/side:



hypotenuse =
side/s adjacent to ∠A =
side opposite ∠A =
side adjacent to ∠B =
side opposite ∠B =
side opposite ∠C =
side adjacent to ∠C =

(Tunghayan ang mga sagot sa ibaba)

Matapos nating malaman ang mga parte o bahagi ng isang right triangle, handa na tayong kilalanin ang anim na trigonometric functions. Ang mga ito ay ginagamit upang hanapin ang nawawalang mga parte ng mga right triangles.

The Six Trigonometric Functions

1. Sine of an Angle

The sine of A is the ratio of the length of the side opposite A to the length of the hypotenuse. The sine of A is abbreviated as sin A.

Ang sine ng A (angle A) ay ang ratio ng haba ng gilid sa tapat ng A sa haba ng hypotenuse. Ang sine ng A ay dinaglat bilang sin A. Samakatuwid,


Pagmasdan ang pigura sa ibaba:




Ayon sa drawing sa itaas, makikita na:

sin Q = opposite/hypotenuse = RS/QS = 9/15

sin S = opposite/hypotenuse = QR/QS = 12/15

Pagmasdan ang pigura sa ibaba:



Ayon sa drawing sa itaas, makikita na:

sin D = opposite/hypotenuse = EF/DF = 24/26

sin F = opposite/hypotenuse = DE/DF = 10/26

2. Cosine of an Angle

The cosine of A (angle A) is the ratio of the length of the side adjacent to A and the length of the hypotenuse. The cosine of A is abbreviated as cos A. 

Ang cosine ng A (angle A) ay ang ratio ng haba ng gilid katabi ng A sa haba ng hypotenuse. Ang cosine ng A ay dinaglat bilang cos A. Samakatuwid,


Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

cos Q = adjacent/hypotenuse = QR/QS = 12/15

cos S = adjacent/hypotenuse =  SR/QS = 9/15

Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

cos D = adjacent/hypotenuse = DE/DF = 10/26

cos F = adjacent/hypotenuse = EF/DF = 24/26

3. Tangent of an Angle

The tangent of A (angle A) is the ratio of the length of the side opposite A and the length of the side adjacent to A.  The tangent of A is abbreviated as tan A. 

Ang tangent ng A (angle A) ay ang ratio ng haba ng gilid katapat ng A sa haba ng gilid kalapit ng A. Ang tangent ng A ay dinaglat bilang tan A. Samakatuwid,

                    tan A = length of side opposite  A
        length of side adjacent to A


Pagmasdan ang pigura sa ibaba:

Ayon sa drawing sa itaas, makikita na:

tan Q = opposite/adjacent = SR/QR = 9/12

tan S = opposite/adjacent =  QR/SR = 12/9

Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

tan D = opposite/adjacent = EF/DE = 24/10

tan F = opposite/adjacent = DE/EF = 10/24

4. Cotangent of an Angle

The cotangent of A (angle A) is the reciprocal of the tangent of A. It is the ratio of the length of the side adjacent to A and the length of the side opposite A.  The cotangent of A is abbreviated as cot A. 

Ang cotangent ng A (angle A) ay ang kabaliktaran ng tangent ng A. Ito ay ang ratio ng haba ng gilid kalapit ng A sa haba ng gilid katapat ng A. Ang cotangent ng A ay dinaglat bilang cot A. Samakatuwid,

                    cot A = length of side adjacent to A
        length of side opposite A


Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

cot Q = adjacent/opposite = QR/SR = 12/9

cot S = adjacent/opposite =  SR/QR = 9/12

Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

cot D = adjacent/opposite = DE/EF = 10/24

cot F = adjacent/opposite = EF/DE = 24/10

5. Secant of an Angle

The secant of A (angle A) is the reciprocal of the cosine of A. It is the ratio of the length of the hypotenuse and the length of the side adjacent to  A.  The secant of A is abbreviated as sec A. 

Ang secant ng A (angle A) ay ang kabaliktaran ng cosine ng A. Ito ay ang ratio ng haba ng hypotenuse sa haba ng gilid kalapit ng A. Ang secant ng A ay dinaglat bilang sec A. Samakatuwid,

                    sec A = hypotenuse                  
        length of side adjacent to A


Pagmasdan ang pigura sa ibaba:

Ayon sa drawing sa itaas, makikita na:

sec Q = hypotenuse/adjacent = QS/QR = 15/12

sec S = hypotenuse/adjacent =  QS/SR = 15/9

Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

sec D = hypotenuse/adjacent = DF/DE = 26/10

sec F = hypotenuse/adjacent = DF/EF = 26/24

6. Cosecant of an Angle

The cosecant of A (angle A) is the reciprocal of the sine of A. It is the ratio of the length of the hypotenuse and the length of the side opposite  A.  The cosecant of A is abbreviated as csc A. 

Ang cosecant ng A (angle A) ay ang kabaliktaran ng sine ng A. Ito ay ang ratio ng haba ng hypotenuse sa haba ng gilid katapat ng A. Ang cosecant ng A ay dinaglat bilang csc A. Samakatuwid,

                csc A = hypotenuse                  
      length of side opposite A


Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

csc Q = hypotenuse/opposite = QS/SR = 15/9

csc S = hypotenuse/opposite =  QS/QR = 15/12

Pagmasdan ang pigura sa ibaba:


Ayon sa drawing sa itaas, makikita na:

csc D = hypotenuse/opposite = DF/EF = 26/24

csc F = hypotenuse/opposite = DF/DE = 26/10

PAGSASANAY B

1. Pagmasdan ang drawing sa ibaba at sagutin ang mga tanong:




sin A =                sin C =
cos C =               cos A =
tan A =                tan C =

2.Pagmasdan ang drawing sa ibaba at sagutin ang mga tanong:




sin Y =                 sec Z =         
cos Y =                cot Z =
tan Y =                csc Z

3. If sin B = 8/3, then csc B = ______.

A. 8/3 B. 3/8 C. 3/3 D. 8/8

4. If tan W = 12/13, then 13/12 is ______.

A. csc W         B. sec W         C. cos W         D. cot W

5. Right Δ123 has sides 3, 4, and 5 units. The hypotenuse of the triangle is ______ units.

A. 3         B. 4         C. 5 D. 12

6. Right ΔJKL has sides 9, 12, and 15 cm. If ∠K is the right angle and side JK = 12 cm, then cot L = _____?

A. 9/12 B. 12/15         C. 9/15 D. 12/9

Tandaan

The two sides of the triangle that form the right angle are called its legs. The third side is called its hypotenuse.

The leg that helps form an acute angle in a right triangle is said to be adjacent to that angle.

The same leg is said to be opposite the other acute angle.

The hypotenuse is always the side opposite the right angle and it is the longest side.


Upang matandaan ang formula para sa sine, cosine, at tangent, alalahanin ito:
SohCahToa, kung saan ang S = sine, o = opposite, h = hypotenuse, C = cosine, at T = tangent. Kaya, 
Soh ==>sine A = o/h or opposite/hypotenuse
Cah==>cosine A = a/h or adjacent/hypotenuse
Toa==>tan A = o/a or opposite/adjacent


Tandaan din na:

Ang cotangent  ay kabaliktaran ng tangent . Kung ang tan A = opposite/adjacent,  ang cot A = adjacent/opposite.

Ang secant ay kabaliktaran ng cosine. Kung ang cos A = adjacent/hypotenuse, ang sec A = hypotenuse/adjacent.

Ang cosecant ay kabaliktaran ng sine. Kung ang sin A = opposite/hypotenuse, ang csc A = hypotenuse/opposite.

SAGOT SA PAGSASANAY